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SUMMARY 
A method of obtaining discrete and/or integer valued solutions to non-linear design problems is presented. The general 
framework is that of geometric programming which is combined with the Branch and Bound Method. Recently 
developed computational procedures are described and are used to demonstrate the feasibility of the above method. 

1. Introduction 

This paper considers an extension of optimization techniques in the area of optimal design; 
in particular an extension of geometric programming [9] to deal with design problems with 
discrete valued variables. The motivation of this research lies in the fact that in many design 
situations some or all of the design variables are not continuous in nature ; for example, some 
variables may be integer valued (number of sides of a container, number of tubes in a heat 
exchanger, etc.) and other variables may be discrete valued (thickness of steel plate, diameter of 
pipes, etc.). While geometric programming has been shown to be widely applicable in engineering 
design problems [1, 3, 5, 15, 16], it,as most optimization techniques, requires that the variables 
be continuous in nature. A general practice is to solve the design problem as if all variables were 
continuous and round the optimal solution to  discrete or integer valued solution where 
necessary. 

It became apparent in integer linear programming that the rounding operation has two 
serious drawbacks : (1) the rounded solution may not be feasible and (2) even if it is feasible 
it may be far from optimal [12]. The fact that we are dealing with non-linear functions will 
serve to exaggerate these difficulties. To obtain integer solutions in linear programming in an 
efficient manner the Branch and Bound [4, 12, 14] method has been successfully implemented. 
Since the Branch and Bound method is a recursive technique and requires the solution of a 
sequence of problems it has not received a lot of attention with respect to non-linear models ; 
particularly in light of the potential effort required to solve each subproblem. 

However, in light of recent developments for solving geometric programs, we describe an 
efficient procedure for obtaining discrete and/or integer solutions to non-linear optimization 
problems. This procedure is a combination of a sequential linear programming method for 
obtaining optimal solutions to geometric programs and the above mentioned Branch and 
Bound technique. 

Section 2 gives brief descriptions of the LP approach to geometric programs and the Branch 
and Bound technique. Section 3 presents the combined algorithm and some examples. We 
conclude with a discussion of the extension of the results to the more general polynomial 
programs of Avriel and Williams [2, 3]. 

For  the most part the paper is gelf contained. Most current texts dealing with engineering 
design contain explanatory material on GP [5, 15, 16]. The Branch and Bound method as 
described in the linear programming context applies here as well [12]. 

2. Basic concepts 

The class of problems known as ordinary geometric programs [9] is characterized as : 
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rain go (t), 

s.t. gk(t)<= 1, k = 1 . . . . .  p ,  (1) 

t = (t, . . . . .  > 0 ,  

where 

gk(t)= ~ Ci f i  ~ ' ,  k = O ,  1 . . . . .  p ,  (2) 
i=m~ j= i 

are posynomials for c i > 0. The aij are arbitrary real numbers and the ink, nk are indices which 
consecutively number the terms of each function, i.e., 1 = m 0 . . . . .  n o number the objective 
function terms; no+ 1 =m 1 . . . .  , nl for the first constraint and so on with np=n for a total of 
n terms. 

Beside the applicability of the above general model to many engineering design problems, 
another attractive feature of geometric programming is the relative ease of solution via the 
associated dual geometric program [9]. Several algorithms have been proposed to solve the 
dual program, which consists of maximizing a concave function over a set of linear constraints, 
and construct the primal solution from algebraic relationships. One disadvantage of a gradient 
based algorithm is the undefinediness of certain components of the gradient of the dual 
function in the presence of inactive (loose) primal constraints. For  a discussion of these dif- 
ficulties see, for example, [9]. 

We present the outline of an algorithm which avoids the above difficulties and reduces the 
solution of a geometric program to the solution of a sequence of linear programs. The following 
is self contained, however, the reader is referred to [6, 7, 8] for complete details. The algorithm 
is of the general form of a cutting plane method [13, 17]. Such methods deal with a linearized 
version of the problem and converge to the optimal solution from outside the feasible region 
by the addition of appropriate hyperplanes (cutting planes). As originally proposed the linear- 
ization is based on the 1st order Taylor Series expansion of the non-linear functions at the 
current operating point t k. That is, a function g(t) is approximated, at the point t k, by: 

g (t k) + v g  ( tky  (t - (3) 

Extensions of the original development have been given to show the applicability of the method 
to other than convex functions [17]. 

The method to be described here is based on the arithmetic-geometric inequality, equation 23 
[2, 8], and as a result avoids the gradient computations of(3). To illustrate the basic procedure 
consider the function: 

g (t) = 3t~-' t 2 t3 2 + t 2 ' t 3 + 2t I t 2 ~ = U I (t)+ U 2 (t) + U 3 (t). (4) 

The arithmetic-geometric inequality states that if ~ > 0 then 

9(t) >= 17 [ui(t)/ei] ~'- g(t; e), (5) 
where 

e, = u,(?)/g(O, i =  1, 2, 3 .  (6) 

So if tl = t2 = t3 = 1 then applying (5)-(6) we obtain the monomial form: 

[3t;it2t3=l 3j6 [tI't3]'  = 61/261/662/6tl l /6t21/6t3 5/6 (7) 
3/6 ] L I ~  -]  L 2/6 j 

Taking the natural logarithm of (7) and making the change of variables Z~ = log t~ we obtain 
the linear form 

O(Z) = log 6 - ~ Z ,  --~Iz 2 - 5 Z  3 . (8) 

Thus we have linearized a posynomial form (4) by employing an algebraic inequality (5) and a 
log transformation. There are several points of interest concerning this approach: 
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1. The method is exterior; that is for constraints of the form gk(t)< 1 it follows from (5) 
that 1 > Ok(t) > gk (t; e). Thus the minimum value of the objective function is approached from 
below and the approximations, 9k(t; e), are at best tangent to the solution space. 

2. The variables, Z j, are unrestricted in sign, so in terms of solving such a system it is more 
efficient to deal with the dual system. 

Applying the above notions to a posynomial GP of the form: 

A: rain to, 

s.t. to 190 (t) < 1, (9) 

gk(t)< l ,  k--1 ..... p, (10) 

O<Lj<t j<Uj<az ,  j = 0 , 1  . . . . .  m,  

where the objective function, go (t), has been treated as an additional constraint and lower and 
upper bounds have been introduced for each variable, we obtain the monomial program 

A(e): m i n t o ,  

s.t. t o 1 go (t; e) =< 1 , 

gk(t;e)<l ,  k = l  .... ,p,  

O<Lj<tj<U~<oo, j = 0 , 1  . . . . .  m,  
where 

nk 

gk(t; ) = ]7I 
i=mk 

ei=U,(~)/gk(l), mk<i<nk, k = 0 , 1  . . . . .  p for i > 0 .  

Applying the log transformation and the change of variables Zj = log t~ we obtain the linear 
program 

AL(e): m i n Z o ,  
ll 0 

s.t. -Zo+Co+ • ~ eiaijZi<O, 
i = 1  j = l  

Ck+ ~ eiaijZj<O, k = l  ..... p, 
i=mk j = l  

Zj > log L j ,  

Z~< log Uj, j = 0 ,  1, . . . ,m ,  

(ci/ 3 
nk 

where C k = log I-I 
i=mk 

In the algorithm that follows, the statement "Solve the LP", should be interpreted as solving 
the dual LP to AL(e ), As mentioned earlier this is more efficient since the Z i are unrestricted in 
sign. In fact the method used by the authors also has generalized bounding capabilities which 
increases efficiency due to the presence of bounds on each variable. 

The algorithm is: 
STEP 0. For an initial point t o (feasible or infeasible), solve the linear program AL(e~ 

STEP 1. If the optimal LP solution, t*, is feasible with respect to (9)-(10), stop with the 
optimal solution to A being t*. 

(a) Otherwise, determine the most violated constraint; that is: 

max {k :gk(t*) > 1} 
and go to STEP 2. 

STEP 2. Suppose k=  1 is the result of (a); then form the cutting plane 91 (t; t*) and adjoin 
its linearized version to the original LP to yield AL(e 1) and return to STEP 1. 
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The above approach provides a sequential LP method for obtaining solutions to geometric 
programs. Also, as will be discussed in the next section, this approach is particularly well 
suited to the Branch and Bound technique. As we will show the combination of these techniques 
provides an efficient procedure for obtaining integer and discrete solutions to non-linear design 
problems. 

We present a brief discussion of the Branch and Bound technique; the reader is referred to 
[12, 14] for complete details. Branch and Bound, an enumerative scheme for obtaining optimal 
solutions in a systematic way, involves two basic operations" 

1. Branching--an operation which divides the feasible solution space into a collection of 
subsets. 

2. Bounding--the establishment of bounds on the objective function over the subsets of 
solutions determined by the branching operation. It is this operation which reduces the 
number of branches which are completely evaluated. 

The version to be discussed here is to embed the discrete valued problem in a less restrictive 
solution space; the variables are assumed continuous, and then branch on the discrete and 
integer valued variables. 

The branching operation divides the elements of the given feasible solution space into disjoint 
collections of points which include all the original feasible points. Specific branching rules can 
vary according to the problem at hand and in the next section we choose to branch on the dis- 
crete variables initially and then form secondary branches on integer variables. 

The bounding operation provides upper and lower bounds on the value the optimal value 
of the objective function and on the value of the objective function over the subsets determined 
by the branching operation. These bounds play two important roles: 

(1) The lower bound (optimal continuous solution) provides a convenient test concerning 
the feasibility of the various branches. For example if the upper bound over a branch is 
less than the continuous optimal solution that branch can be discarded as being in- 
feasible. 

(2) The upper and lower bounds on the potential subsets of discrete solutions provides a 
means of eliminating branches without completely evaluating the entire branch. Once 
an upper bound on the value of the objective function (the value of the best feasible 
discrete solution identified so far) is known, it is used to eliminate branches by comparing 
it with the lower bound of a branch. The lower bound can be the continuous solution and 
if the lower bound on a branch exceeds the current (upper) value of the objective function 
that branch is eliminated from consideration. 

It is important to note that the above described procedure lends a sequential nature to 
Branch and Bound methods and as a result reduces the number of potential solutions that must 
be evaluated. Furthermore, Branch and Bound methods are optimal seeking; that is, they will 
locate the global optimal solution. In the next section we show that the branching operation 
is particularly suited to the previous cutting plane algorithm to obtain integer solutions to non- 
linear problems. 

Before presenting the algorithm we give a small example to motivate the development. 
Consider the optimal design of a ventilating shaft [15] which is to be polygonal with sides of 
equal length and have a minimal cross sectional area of 600 sq. ft. The costs of construction 
involve an excavation cost ($35nL + $3000n) and the cost of concrete ($200nL + $20nL2), where 
n is the number of sides (integer) and L is the length per side. The resulting design problem is: 

min 235nL + 3000n + 20nL 2 , 
s.t. 1/4nL 2 cot(H/n) > 600 (cross sectional area), (11) 

n > 3 ,  (12) 

L > 0 .  

To convert the above model to a posynomial GP we write (11) as 

2400n- 1 L- Z/cot (H/n) < 1 
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TABLE 1 

Iteration* n L Cost Execution time 
(sec) ~ 

0"* 10 25 75000.0 
1 20 5.659 50000.0 
2 7.463 11.951 54935.9 
3 10.530 8.371 64288.5 
4 8.846 10.024 64481.7 
5 8.123 10.949 64576.5 
6 8.137 10.949 64686.9 
7 7.805 11.440 64782.9 
8 7.969 11.192 64818.8 
9 7.887 11.315 64821.8 

10 7.887 11.315 64824.9 
11 7.846 11.377 64827.5 
12 7.867 11.346 64827.5 
13 7.877 11.330 64827.5 
14 7.8818 11.3227 64827.5 0.2640 

n ~ 7  
15 7.0000 12.847 57193.2 
16 7.0000 12.8467 65238.0 0.3540 

n ~ 8  
17 20.0000 5.659 50000.0 
18 8.0000 11.1463 56769.1 
19 8.0000 11.1463 64833.2 
20 8.0000 11.1463 64833.2 0.4610 

* Each iteration corresponds to the solution of an LP, the construction of a cutting plane and the formulation of the 
next LP in the sequence. 
** Iteration 0 corresponds to the starting point. 
t IBM 370/165. 

and then replace cot (H/n) by its Taylor Series expansion to obtain 

2400n - lL  -2 + ~ + < 1. (13) 

Ignoring, for the moment,  the integer restriction on n we obtain the global solution: 

n* = 7.8818, 

L* = 11.3227, 

cos t = 64827.5. 

We now branch on the integer variable n as : n > 8 and n < 7 which yields the solutions: 

n* = 8 n* = 7 

L* = 11.1463 L* = 12.8467 

cos t = 64833.2 cos t = 65238.0 

As will be shown the algorithm requires only a modification of (12) to perform these branch 
operations. Also the continuous solution provides a convenient starting point;  that is, since 
the algorithm does not require feasible starting points we need only modify (12) and continue 
iterating. Table 1 presents the computat ional  results. We should also note that we are not making 
full use of the Branch and Bound method since there is only one variable (n) to brnach on. 

3. Combined method and extension to polynomial  programs 

We now describe the combination of Branch and Bound methods with the linear programming 
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algorithm for obtaining discrete solutions to non-linear design problems. It should be noted 
that we do not develop specific branching rules since such rules would vary according to the 
problem at hand. It has been pointed out that the efficiency of Branch and Bound methods in 
the face of many discrete or integer variables depends heavily on an efficient development of 
branching rules. 

The basis of the development here is to illustrate how the Branch and Bound method can be 
incorporated efficiently within an algorithm for solving non-linear problems. That is, the 
algorithm is not dependent on a specific set of branching rules. The approach is to embed the 
discrete or integer model in a continuous model and once the continuous solution has been 
obtained develop branches on the discrete variables and (if necessary) on the integer variables. 
Schematically, the method is indicated in Figure I. 

Figure 1. 

STER 
PROGRAM ONTINUOUS) 

~ ~ 1 DISCRETE VAL~D BI~kNCHE $ 

VALUED BRANCHES 

In terms of combining the GP algorithm and the Branch and Bound method we assume the 
algorithm described in the previous section has been used to determine the optimal continuous 
solution, t*. Since t* is in fact the global optimum go (t*) provides a convenient test for feasibility 
of discrete solutions. 

Assuming the optimal solution is not discrete valued we select those variables which are to 
be discrete valued and assign to them their respective values; thus creating discrete valued 
branches. If the number of such variables and values were small we might initially solve several 
programs with these values rather than the continuous problem. The values of the programs 
thus obtained provide lower bounds on the various branches and will be used in the elimination 
of other branches. 

Assuming there are now integer valued variables to be determined we now branch on each 
of the above branches with respect to the integer variables. If we obtain an integer solution 
which is less than any of the lower bounds on the discrete branches we can eliminate that dis- 
crete branch from further consideration. The evaluation continues until all branches have been 
evaluated or eliminated from consideration. To illustrate the method we consider the model 
for the optimal design of a vapor condensor given by Avriel and Wilde [1]. 

min 172400 N - V / 6 D o l L  -4/3 + 97770 D ~ 1 7 6  1 + 1.57 NDoL 

+ O.0382LDI-4.8N-l.8 + 38380(NDiL ) 1, 

subject to: 0.00817 + Di< D o , 

where N = number of tubes (integer), 
L -- tube length (feet), 
D i = inside diameter (feet), 
D o = outside diameter (feet). 

The complete description of the model may be found in the above reference. For  our purposes 
here we assume the tube has discrete outside diameters (Do) of 1 inch, 0.75 inches and 0.5 inches. 
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We also assume the inside diameter (Di) remains continuous in nature subject to the above 
constraint. 

Upper  and lower bounds were specified as 

10 < N < 800, 

10 < L _< 100, 
- - ( 1 4 )  

0.0001 ~ Di ~ 1, 

0.0001 < D o<  1. 

Treating all variables as continuous the minimum cost design is found to be 

N = 63.534 tubes,  

L = 38.355 ft., 

Di = 0.09877 ft., 

Do = 0.10694 ft., 

cost = $896.963. 

Constructing the discrete branches on the outside diameter we obtain the following designs 
where the costs define lower bounds on a particular branch:  

D o = 1 inch D o = 0.75 inches D o = 0.5 inches 

N 111.792 218.091 585.667 
L 28.083 19.331 11.009 
Di 0.07516 0.05433 0.03349 
Cost 897.928 902.016 916.011 
Iterations 28 23 21 
Time 0.754 sec. 0.504 sec. 0.464 sec. 

In order to obtain a design with an integer number  of tubes we now construct branches on 
integer values of N. Since the cost associated with D o = 1 inch is the lowest we begin by branching 
there. The branches are N > 112 and N < 111 and at this point we begin to realize an additional 
advantage of the previously described cutting plane method. The branches can be incorporated 
directly in the above model in the form of additional constraints. The solution procedure then 
continues from the continuous solution (with respect to N) since a feasible point is not required, 
thus avoiding a complete restart of the algorithm. 

D 0 = l i n c h , N < l l l  D o = l i n c h , N > 1 1 2  

N 
L 
Di 
Cost 
Additional 

iterations 
Time 

l l l  tubes 112 
28.227 ~. 28.042 ~. 

0.075163 ~. 0.075163 ~. 
897.939 897.930 

9 17 
0.267 0.564 

Since the cost associated with N = 112 is more attractive we conclude it is the optimal design. 
However, due to the difference with respect to N = 111, we might conclude we are indifferent 
between these designs based on cost. We remark it is not necessary to evaluate the remaining 
branches since the lower bounds on those branches are higher than the current integer solution. 
Thus while we had the potential of evaluating 6 branches we needed to evaluate 2 branches in 
order to determine the optimal solution. In terms of computat ional  burden a total of 98 LP's 
were solved requiring 2.553 seconds of IBM 370/165 time to completely determine the optimal 
solution. 
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t 2 

Figure 2. 

t 

t 1 

We notice that in the above example the rounding of the continuous solution would have 
yielded the same result as obtained via the branch and bound method. However, as Figure 2 
indicates this may not always be the case. The figure is to represent a hypothetical problem with 
two integer valued variables. 

The point t* is the optimal continuous solution and as can be seen from the objective 
function contours the nearest (with respect to t*) integer solutions would not be optimal L 

As pointed out by Avriel and Williams [3] not all design problems fit the restrictive form of 
posynomial geometric programs. This larger class of problems, termed polynomial or com- 
plementary geometric programs, does not exhibit the inherent convexity of the posynomial 
programs and as a result we can at best guarantee the attainment of a local optimal solution. 
Since the polynomial program can be reduced to a sequence of approximating posynomial 
programs [2, 3], the previously described algorithm can be used to obtain numerical solutions. 
Such a development has been given by Dembo et al. [6]. The combination of the branch and 
bound algorithm with the continuous solution procedure requires some modifications. 

Following the development of Avriel and Williams [2, 3], we write complementary geometric 
programs as : 

min to,  

subject to '  Pk(t) < 1 k = 0 , 1 , . . . , p ,  
Qk(t ) = , 

t = (t o . . . . .  tm) > O ,  

where Pk and Qk are posynomials. 
Applying the geometric inequality 

Z u, >= I1 
i i 

to 

(15) 

(16) 

"~ gi(O for ~>0  Qk(t) = 2 gi(t) with e i - 

we obtain the approximating program by replacing Qk(t) with the single term posynomial 
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nk 

l ~  (gi(t)/el) ~'' 
i=mk  

The algorithm given by Avriel and Williams [-2, 3] generates a sequence of feasible points 
t (k) which are used to update the approximation and which under mild conditions converges 
to a local minimum [-2]. The algorithm described in Section 2 can be used to solve this sequence 
of programs where the optimal solution to the approximating program is used to construct 
the next program in the sequence. The algorithm terminates when two points in the sequence 
satisfy some predetermined tolerance, i.e. Jt (k ) -  t (k+ 1)1 < TOL. 

When applying the branch and bound technique to determine discrete solutions several 
considerations are important:  

1. Since we may have obtained a local minimum as the continuous solution we cannot over- 
look the possibility of obtaining a discrete solution with a lower value. This, of course, 
would occur when we are in fact at a local solution and the branching technique forces 
us "closer" to the global solution. If the continuous solution is the global solution then its 
value does provide a lower bound on all feasible solutions. It is worthwhile to note that 
a modified Branch and Bound method has been proposed to generate the global continuous 
solution to this class of problems [,10, 11]. 

2. We noted that when dealing with the integer branches such branches required only the 
addition of a constraint to the problem. For  posynomial programs the algorithm of 
Section 2 does not require a feasible point, however, the Avriel and Williams approach to 
complementary programs requires the current point be feasible. Since the constraints 
defining the integer branches are violated we set up, according to the procedure of Dembo 
et al. [6], a penalized program 

min Z I , 

s.t. Pk(t) < 1 k = O ,  1, . , p ,  (17) 
Qk(t ) = , .. 

g,(t) <= z ,  , 

Z I > 1 ,  

where g~(t) is the added integer branch about the current non-integer solution. 
This program is then solved using the algorithm of Section 2 and will yield a feasible solution 

to the original (unpenalized) program if Z~' = 1. Under this condition the optimal t values will 
provide a feas ib le  point for the program associated with the integer branch. We should point 
out that since we are dealing with non-convex programs there may be no feasible solutions 
along such a branch; this situation will be identified by the solution to (16) being Z~' > 1. 

4. Conclusions 

The combination of the Branch and Bound technique and the cutting plane algorithm for 
ordinary geometric programs provides an efficient method for dealing with discrete valued 
non-linear problems. The method avoids the potential difficulties associated with simply 
rounding continuous solutions to discrete solutions and is readily implemented within a 
cutting plane algorithm. While the Branch and Bound could be used in connection with any 
optimization technique the cutting plane method is particularly well suited since the integer 
branches can be constructed with the addition of constraints and does not require a restart of 
the algorithm. 

The combined method is applicable to the larger class of polynomial geometric programs 
following the approach of Avriel and Williams [-2, 3]. 
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