
Journal of Engineering Mathematics, Vol. 9, No. 1, January 1975
Noordhoff International Publishing- Leyden
Printed in The Netherlands

29

Discrete solutions to engineering design problems

J. J. D I N K E L and G. A. K O C H E N B E R G E R

Department of Management Science and Organizational Behavior, The Pennsylvania State University, University Park,
Pennsylvania 16802, U.S.A.

(Received April 22, 1974)

SUMMARY
A method of obtaining discrete and/or integer valued solutions to non-linear design problems is presented. The general
framework is that of geometric programming which is combined with the Branch and Bound Method. Recently
developed computational procedures are described and are used to demonstrate the feasibility of the above method.

1. Introduction

This paper considers an extension of optimization techniques in the area of optimal design;
in particular an extension of geometric programming [9] to deal with design problems with
discrete valued variables. The motivation of this research lies in the fact that in many design
situations some or all of the design variables are not continuous in nature ; for example, some
variables may be integer valued (number of sides of a container, number of tubes in a heat
exchanger, etc.) and other variables may be discrete valued (thickness of steel plate, diameter of
pipes, etc.). While geometric programming has been shown to be widely applicable in engineering
design problems [1, 3, 5, 15, 16], it,as most optimization techniques, requires that the variables
be continuous in nature. A general practice is to solve the design problem as if all variables were
continuous and round the optimal solution to discrete or integer valued solution where
necessary.

It became apparent in integer linear programming that the rounding operation has two
serious drawbacks : (1) the rounded solution may not be feasible and (2) even if it is feasible
it may be far from optimal [12]. The fact that we are dealing with non-linear functions will
serve to exaggerate these difficulties. To obtain integer solutions in linear programming in an
efficient manner the Branch and Bound [4, 12, 14] method has been successfully implemented.
Since the Branch and Bound method is a recursive technique and requires the solution of a
sequence of problems it has not received a lot of attention with respect to non-linear models ;
particularly in light of the potential effort required to solve each subproblem.

However, in light of recent developments for solving geometric programs, we describe an
efficient procedure for obtaining discrete and/or integer solutions to non-linear optimization
problems. This procedure is a combination of a sequential linear programming method for
obtaining optimal solutions to geometric programs and the above mentioned Branch and
Bound technique.

Section 2 gives brief descriptions of the LP approach to geometric programs and the Branch
and Bound technique. Section 3 presents the combined algorithm and some examples. We
conclude with a discussion of the extension of the results to the more general polynomial
programs of Avriel and Williams [2, 3].

For the most part the paper is gelf contained. Most current texts dealing with engineering
design contain explanatory material on GP [5, 15, 16]. The Branch and Bound method as
described in the linear programming context applies here as well [12].

2. Basic concepts

The class of problems known as ordinary geometric programs [9] is characterized as :

Journal of Engineering Math., Vol. 9 (1975i 29-38

30 J. J. Dinkel, G. A. Kochenberger

rain go (t),

s.t. gk(t)<= 1, k = 1 p , (1)

t = (t, > 0 ,

where

gk(t)= ~ Ci f i ~ ' , k = O , 1 p , (2)
i=m~ j= i

are posynomials for c i > 0. The aij are arbitrary real numbers and the ink, nk are indices which
consecutively number the terms of each function, i.e., 1 = m 0 n o number the objective
function terms; no+ 1 =m 1 , nl for the first constraint and so on with np=n for a total of
n terms.

Beside the applicability of the above general model to many engineering design problems,
another attractive feature of geometric programming is the relative ease of solution via the
associated dual geometric program [9]. Several algorithms have been proposed to solve the
dual program, which consists of maximizing a concave function over a set of linear constraints,
and construct the primal solution from algebraic relationships. One disadvantage of a gradient
based algorithm is the undefinediness of certain components of the gradient of the dual
function in the presence of inactive (loose) primal constraints. For a discussion of these dif-
ficulties see, for example, [9].

We present the outline of an algorithm which avoids the above difficulties and reduces the
solution of a geometric program to the solution of a sequence of linear programs. The following
is self contained, however, the reader is referred to [6, 7, 8] for complete details. The algorithm
is of the general form of a cutting plane method [13, 17]. Such methods deal with a linearized
version of the problem and converge to the optimal solution from outside the feasible region
by the addition of appropriate hyperplanes (cutting planes). As originally proposed the linear-
ization is based on the 1st order Taylor Series expansion of the non-linear functions at the
current operating point t k. That is, a function g(t) is approximated, at the point t k, by:

g (t k) + v g (tky (t - (3)

Extensions of the original development have been given to show the applicability of the method
to other than convex functions [17].

The method to be described here is based on the arithmetic-geometric inequality, equation 23
[2, 8], and as a result avoids the gradient computations of(3). To illustrate the basic procedure
consider the function:

g (t) = 3t~-' t 2 t3 2 + t 2 ' t 3 + 2t I t 2 ~ = U I (t)+ U 2 (t) + U 3 (t). (4)

The arithmetic-geometric inequality states that if ~ > 0 then

9(t) >= 17 [ui(t)/ei] ~'- g(t; e), (5)
where

e, = u,(?)/g(O, i = 1, 2, 3 . (6)

So if tl = t2 = t3 = 1 then applying (5)-(6) we obtain the monomial form:

[3t;it2t3=l 3j6 [tI't3]' = 61/261/662/6tl l /6t21/6t3 5/6 (7)
3/6] L I ~ -] L 2/6 j

Taking the natural logarithm of (7) and making the change of variables Z~ = log t~ we obtain
the linear form

O(Z) = log 6 - ~ Z , --~Iz 2 - 5 Z 3 . (8)

Thus we have linearized a posynomial form (4) by employing an algebraic inequality (5) and a
log transformation. There are several points of interest concerning this approach:

Journal of Engineering Math., Vol. 9 (1975) 29-38

Discrete solutions to engineering design problems 31

1. The method is exterior; that is for constraints of the form gk(t)< 1 it follows from (5)
that 1 > Ok(t) > gk (t; e). Thus the minimum value of the objective function is approached from
below and the approximations, 9k(t; e), are at best tangent to the solution space.

2. The variables, Z j, are unrestricted in sign, so in terms of solving such a system it is more
efficient to deal with the dual system.

Applying the above notions to a posynomial GP of the form:

A: rain to,

s.t. to 190 (t) < 1, (9)

gk(t)< l , k--1 p, (10)

O<Lj<t j<Uj<az , j = 0 , 1 m,

where the objective function, go (t), has been treated as an additional constraint and lower and
upper bounds have been introduced for each variable, we obtain the monomial program

A(e): m i n t o ,

s.t. t o 1 go (t; e) =< 1 ,

gk(t;e)<l , k = l ,p,

O<Lj<tj<U~<oo, j = 0 , 1 m,
where

nk

gk(t;) =]7I
i=mk

ei=U,(~)/gk(l), mk<i<nk, k = 0 , 1 p for i > 0 .

Applying the log transformation and the change of variables Zj = log t~ we obtain the linear
program

AL(e): m i n Z o ,
ll 0

s.t. -Zo+Co+ • ~ eiaijZi<O,
i = 1 j = l

Ck+ ~ eiaijZj<O, k = l p,
i=mk j = l

Zj > log L j ,

Z~< log Uj, j = 0 , 1, . . . ,m ,

(ci/ 3
nk

where C k = log I-I
i=mk

In the algorithm that follows, the statement "Solve the LP", should be interpreted as solving
the dual LP to AL(e), As mentioned earlier this is more efficient since the Z i are unrestricted in
sign. In fact the method used by the authors also has generalized bounding capabilities which
increases efficiency due to the presence of bounds on each variable.

The algorithm is:
STEP 0. For an initial point t o (feasible or infeasible), solve the linear program AL(e~

STEP 1. If the optimal LP solution, t*, is feasible with respect to (9)-(10), stop with the
optimal solution to A being t*.

(a) Otherwise, determine the most violated constraint; that is:

max {k :gk(t*) > 1}
and go to STEP 2.

STEP 2. Suppose k= 1 is the result of (a); then form the cutting plane 91 (t; t*) and adjoin
its linearized version to the original LP to yield AL(e 1) and return to STEP 1.

Journal of Engineerin9 Math., Vol. 9 (1975) 29-38

32 J. J. Dinkel, G. A. Kochenberger

The above approach provides a sequential LP method for obtaining solutions to geometric
programs. Also, as will be discussed in the next section, this approach is particularly well
suited to the Branch and Bound technique. As we will show the combination of these techniques
provides an efficient procedure for obtaining integer and discrete solutions to non-linear design
problems.

We present a brief discussion of the Branch and Bound technique; the reader is referred to
[12, 14] for complete details. Branch and Bound, an enumerative scheme for obtaining optimal
solutions in a systematic way, involves two basic operations"

1. Branching--an operation which divides the feasible solution space into a collection of
subsets.

2. Bounding--the establishment of bounds on the objective function over the subsets of
solutions determined by the branching operation. It is this operation which reduces the
number of branches which are completely evaluated.

The version to be discussed here is to embed the discrete valued problem in a less restrictive
solution space; the variables are assumed continuous, and then branch on the discrete and
integer valued variables.

The branching operation divides the elements of the given feasible solution space into disjoint
collections of points which include all the original feasible points. Specific branching rules can
vary according to the problem at hand and in the next section we choose to branch on the dis-
crete variables initially and then form secondary branches on integer variables.

The bounding operation provides upper and lower bounds on the value the optimal value
of the objective function and on the value of the objective function over the subsets determined
by the branching operation. These bounds play two important roles:

(1) The lower bound (optimal continuous solution) provides a convenient test concerning
the feasibility of the various branches. For example if the upper bound over a branch is
less than the continuous optimal solution that branch can be discarded as being in-
feasible.

(2) The upper and lower bounds on the potential subsets of discrete solutions provides a
means of eliminating branches without completely evaluating the entire branch. Once
an upper bound on the value of the objective function (the value of the best feasible
discrete solution identified so far) is known, it is used to eliminate branches by comparing
it with the lower bound of a branch. The lower bound can be the continuous solution and
if the lower bound on a branch exceeds the current (upper) value of the objective function
that branch is eliminated from consideration.

It is important to note that the above described procedure lends a sequential nature to
Branch and Bound methods and as a result reduces the number of potential solutions that must
be evaluated. Furthermore, Branch and Bound methods are optimal seeking; that is, they will
locate the global optimal solution. In the next section we show that the branching operation
is particularly suited to the previous cutting plane algorithm to obtain integer solutions to non-
linear problems.

Before presenting the algorithm we give a small example to motivate the development.
Consider the optimal design of a ventilating shaft [15] which is to be polygonal with sides of
equal length and have a minimal cross sectional area of 600 sq. ft. The costs of construction
involve an excavation cost ($35nL + $3000n) and the cost of concrete ($200nL + $20nL2), where
n is the number of sides (integer) and L is the length per side. The resulting design problem is:

min 235nL + 3000n + 20nL 2 ,
s.t. 1/4nL 2 cot(H/n) > 600 (cross sectional area), (11)

n > 3 , (12)

L > 0 .

To convert the above model to a posynomial GP we write (11) as

2400n- 1 L- Z/cot (H/n) < 1

Journal of Engineerin 9 Math., Vol. 9 (1975) 29-38

Discrete solutions to engineering design problems 33

TABLE 1

Iteration* n L Cost Execution time
(sec) ~

0"* 10 25 75000.0
1 20 5.659 50000.0
2 7.463 11.951 54935.9
3 10.530 8.371 64288.5
4 8.846 10.024 64481.7
5 8.123 10.949 64576.5
6 8.137 10.949 64686.9
7 7.805 11.440 64782.9
8 7.969 11.192 64818.8
9 7.887 11.315 64821.8

10 7.887 11.315 64824.9
11 7.846 11.377 64827.5
12 7.867 11.346 64827.5
13 7.877 11.330 64827.5
14 7.8818 11.3227 64827.5 0.2640

n ~ 7
15 7.0000 12.847 57193.2
16 7.0000 12.8467 65238.0 0.3540

n ~ 8
17 20.0000 5.659 50000.0
18 8.0000 11.1463 56769.1
19 8.0000 11.1463 64833.2
20 8.0000 11.1463 64833.2 0.4610

* Each iteration corresponds to the solution of an LP, the construction of a cutting plane and the formulation of the
next LP in the sequence.
** Iteration 0 corresponds to the starting point.
t IBM 370/165.

and then replace cot (H/n) by its Taylor Series expansion to obtain

2400n - lL -2 + ~ + < 1. (13)

Ignoring, for the moment, the integer restriction on n we obtain the global solution:

n* = 7.8818,

L* = 11.3227,

cos t = 64827.5.

We now branch on the integer variable n as : n > 8 and n < 7 which yields the solutions:

n* = 8 n* = 7

L* = 11.1463 L* = 12.8467

cos t = 64833.2 cos t = 65238.0

As will be shown the algorithm requires only a modification of (12) to perform these branch
operations. Also the continuous solution provides a convenient starting point; that is, since
the algorithm does not require feasible starting points we need only modify (12) and continue
iterating. Table 1 presents the computat ional results. We should also note that we are not making
full use of the Branch and Bound method since there is only one variable (n) to brnach on.

3. Combined method and extension to polynomial programs

We now describe the combination of Branch and Bound methods with the linear programming

Journal of Engineering Math., Vol. 9 (1975) 29-38

34 J. J. Dinkel, G. A. Kochenberger

algorithm for obtaining discrete solutions to non-linear design problems. It should be noted
that we do not develop specific branching rules since such rules would vary according to the
problem at hand. It has been pointed out that the efficiency of Branch and Bound methods in
the face of many discrete or integer variables depends heavily on an efficient development of
branching rules.

The basis of the development here is to illustrate how the Branch and Bound method can be
incorporated efficiently within an algorithm for solving non-linear problems. That is, the
algorithm is not dependent on a specific set of branching rules. The approach is to embed the
discrete or integer model in a continuous model and once the continuous solution has been
obtained develop branches on the discrete variables and (if necessary) on the integer variables.
Schematically, the method is indicated in Figure I.

Figure 1.

STER
PROGRAM ONTINUOUS)

~ ~ 1 DISCRETE VAL~D BI~kNCHE $

VALUED BRANCHES

In terms of combining the GP algorithm and the Branch and Bound method we assume the
algorithm described in the previous section has been used to determine the optimal continuous
solution, t*. Since t* is in fact the global optimum go (t*) provides a convenient test for feasibility
of discrete solutions.

Assuming the optimal solution is not discrete valued we select those variables which are to
be discrete valued and assign to them their respective values; thus creating discrete valued
branches. If the number of such variables and values were small we might initially solve several
programs with these values rather than the continuous problem. The values of the programs
thus obtained provide lower bounds on the various branches and will be used in the elimination
of other branches.

Assuming there are now integer valued variables to be determined we now branch on each
of the above branches with respect to the integer variables. If we obtain an integer solution
which is less than any of the lower bounds on the discrete branches we can eliminate that dis-
crete branch from further consideration. The evaluation continues until all branches have been
evaluated or eliminated from consideration. To illustrate the method we consider the model
for the optimal design of a vapor condensor given by Avriel and Wilde [1].

min 172400 N - V / 6 D o l L -4/3 + 97770 D ~ 1 7 6 1 + 1.57 NDoL

+ O.0382LDI-4.8N-l.8 + 38380(NDiL) 1,

subject to: 0.00817 + Di< D o ,

where N = number of tubes (integer),
L -- tube length (feet),
D i = inside diameter (feet),
D o = outside diameter (feet).

The complete description of the model may be found in the above reference. For our purposes
here we assume the tube has discrete outside diameters (Do) of 1 inch, 0.75 inches and 0.5 inches.

Journal of Engineerin 9 Math., Vol. 9 (1975) 29-38

Discrete solutions to engineerin9 design problems 35

We also assume the inside diameter (Di) remains continuous in nature subject to the above
constraint.

Upper and lower bounds were specified as

10 < N < 800,

10 < L _< 100,
- - (1 4)

0.0001 ~ Di ~ 1,

0.0001 < D o< 1.

Treating all variables as continuous the minimum cost design is found to be

N = 63.534 tubes,

L = 38.355 ft.,

Di = 0.09877 ft.,

Do = 0.10694 ft.,

cost = $896.963.

Constructing the discrete branches on the outside diameter we obtain the following designs
where the costs define lower bounds on a particular branch:

D o = 1 inch D o = 0.75 inches D o = 0.5 inches

N 111.792 218.091 585.667
L 28.083 19.331 11.009
Di 0.07516 0.05433 0.03349
Cost 897.928 902.016 916.011
Iterations 28 23 21
Time 0.754 sec. 0.504 sec. 0.464 sec.

In order to obtain a design with an integer number of tubes we now construct branches on
integer values of N. Since the cost associated with D o = 1 inch is the lowest we begin by branching
there. The branches are N > 112 and N < 111 and at this point we begin to realize an additional
advantage of the previously described cutting plane method. The branches can be incorporated
directly in the above model in the form of additional constraints. The solution procedure then
continues from the continuous solution (with respect to N) since a feasible point is not required,
thus avoiding a complete restart of the algorithm.

D 0 = l i n c h , N < l l l D o = l i n c h , N > 1 1 2

N
L
Di
Cost
Additional

iterations
Time

l l l tubes 112
28.227 ~. 28.042 ~.

0.075163 ~. 0.075163 ~.
897.939 897.930

9 17
0.267 0.564

Since the cost associated with N = 112 is more attractive we conclude it is the optimal design.
However, due to the difference with respect to N = 111, we might conclude we are indifferent
between these designs based on cost. We remark it is not necessary to evaluate the remaining
branches since the lower bounds on those branches are higher than the current integer solution.
Thus while we had the potential of evaluating 6 branches we needed to evaluate 2 branches in
order to determine the optimal solution. In terms of computat ional burden a total of 98 LP's
were solved requiring 2.553 seconds of IBM 370/165 time to completely determine the optimal
solution.

Journal of Engineerin 9 Math., Vol. 9 (1975) 29-38

36 J. J. Dinkel, G. A. Kochenberger

t 2

Figure 2.

t

t 1

We notice that in the above example the rounding of the continuous solution would have
yielded the same result as obtained via the branch and bound method. However, as Figure 2
indicates this may not always be the case. The figure is to represent a hypothetical problem with
two integer valued variables.

The point t* is the optimal continuous solution and as can be seen from the objective
function contours the nearest (with respect to t*) integer solutions would not be optimal L

As pointed out by Avriel and Williams [3] not all design problems fit the restrictive form of
posynomial geometric programs. This larger class of problems, termed polynomial or com-
plementary geometric programs, does not exhibit the inherent convexity of the posynomial
programs and as a result we can at best guarantee the attainment of a local optimal solution.
Since the polynomial program can be reduced to a sequence of approximating posynomial
programs [2, 3], the previously described algorithm can be used to obtain numerical solutions.
Such a development has been given by Dembo et al. [6]. The combination of the branch and
bound algorithm with the continuous solution procedure requires some modifications.

Following the development of Avriel and Williams [2, 3], we write complementary geometric
programs as :

min to,

subject to ' Pk(t) < 1 k = 0 , 1 , . . . , p ,
Qk(t) = ,

t = (t o tm) > O ,

where Pk and Qk are posynomials.
Applying the geometric inequality

Z u, >= I1
i i

to

(15)

(16)

"~ gi(O for ~>0 Qk(t) = 2 gi(t) with e i -

we obtain the approximating program by replacing Qk(t) with the single term posynomial

Journal of En#ineerin 9 Math., Vol. 9 (1975) 29-38

Discrete solut ions to engineerin9 design problems 37

nk

l ~ (gi(t)/el) ~''
i=mk

The algorithm given by Avriel and Williams [-2, 3] generates a sequence of feasible points
t (k) which are used to update the approximation and which under mild conditions converges
to a local minimum [-2]. The algorithm described in Section 2 can be used to solve this sequence
of programs where the optimal solution to the approximating program is used to construct
the next program in the sequence. The algorithm terminates when two points in the sequence
satisfy some predetermined tolerance, i.e. Jt (k) - t (k+ 1)1 < TOL.

When applying the branch and bound technique to determine discrete solutions several
considerations are important:

1. Since we may have obtained a local minimum as the continuous solution we cannot over-
look the possibility of obtaining a discrete solution with a lower value. This, of course,
would occur when we are in fact at a local solution and the branching technique forces
us "closer" to the global solution. If the continuous solution is the global solution then its
value does provide a lower bound on all feasible solutions. It is worthwhile to note that
a modified Branch and Bound method has been proposed to generate the global continuous
solution to this class of problems [,10, 11].

2. We noted that when dealing with the integer branches such branches required only the
addition of a constraint to the problem. For posynomial programs the algorithm of
Section 2 does not require a feasible point, however, the Avriel and Williams approach to
complementary programs requires the current point be feasible. Since the constraints
defining the integer branches are violated we set up, according to the procedure of Dembo
et al. [6], a penalized program

min Z I ,

s.t. Pk(t) < 1 k = O , 1, . , p , (17)
Qk(t) = , ..

g,(t) <= z , ,

Z I > 1 ,

where g~(t) is the added integer branch about the current non-integer solution.
This program is then solved using the algorithm of Section 2 and will yield a feasible solution

to the original (unpenalized) program if Z~' = 1. Under this condition the optimal t values will
provide a feas ib le point for the program associated with the integer branch. We should point
out that since we are dealing with non-convex programs there may be no feasible solutions
along such a branch; this situation will be identified by the solution to (16) being Z~' > 1.

4. Conclusions

The combination of the Branch and Bound technique and the cutting plane algorithm for
ordinary geometric programs provides an efficient method for dealing with discrete valued
non-linear problems. The method avoids the potential difficulties associated with simply
rounding continuous solutions to discrete solutions and is readily implemented within a
cutting plane algorithm. While the Branch and Bound could be used in connection with any
optimization technique the cutting plane method is particularly well suited since the integer
branches can be constructed with the addition of constraints and does not require a restart of
the algorithm.

The combined method is applicable to the larger class of polynomial geometric programs
following the approach of Avriel and Williams [-2, 3].

Journal of Engineerin9 Math., Vol. 9 (1975) 29-38

38 J. J. Dinkel, G. A. Kochenberger

R E F E R E N C E S

[1] M. Avriel and D. J. Wilde, Optimal Condenser Design by Geometric Programming, Ind. Eng. Chem. Process
Design and Dev., 6 (1967) 256-263.

[2] M.AvrielandA. C. Williams, Complementary Geometric Programming, SIAM J.Appl. Math., 19(1970)125-141.
[3] M. Avriel and A. C. Williams, An Extension of Geometric Programming with Applications in Engineering

Optimization, J. of Eng. Math., 5 (1971) 187-194.
[4] E. Balas, A Note on the Branch and Bound Principle, Oprs. Res., 16 (1968) 442-445.
[5] S. G. Beveridge and R. S. Schechter, Optimization: Theory and Practice, McGraw-Hill, New York (1970).
[6] R. Dembo, M. Avriel and U. Passy, An Algorithm for the Solution of Generalized Geometric Programs, paper

presented at XIX TIMS, Houston, Texas, April 1972.
[7] J. J. Dinkel, W. H. EUiott and G. A. Kochenberger, A Linear Programming Approach to Geometric Programs,

submitted for publication.
[8] R. J. Duffin, Linearizing Geometric Programs, SIAM Review, 12 (1970) 211 237.
[9] R. J. Duffin, E. L. Peterson and C. Zener, Geometric Programming, Wiley, New York (1967).

[10] J.E. Falk, Global Solutions of Signomial Programs, Report T-274, Institute for Management Science and Engineer-
ing, The George Washington University, June (1973).

[11] J. E. Falk and R. M. Soland, An Algorithm for Separable Non-Convex Programming Problems, Management
Science, 15 (1969) 550-569.

[12] F. S. Hillier and G. J. Leiberman, Introduction to Operations Research, Holden-Day (1967).
[13] J. E. Kelley, The Cutting Plane Method for Solving Convex Programs, SlAM J. Appl. Math., 8 (1960) 703-712.
[14] L. G. Mitten, Branch and Bound Methods: General Formulation and Properties, Opers. Res., 18 (1970) 24-34.
[15] R. M. Stark and R. L. Nicholls, Mathematical Foundations for Design, Civil Engineering Systems, McGraw-Hill

(1972).
[16] D. J. Wilde and C. S. Beightler, Foundations of Optimization, Prentice-Hall, Englewood Cliffs (1967).
[17] W. I. Zangwill, Nonlinear Programming, Prentice-Hall (1969).

Journal of Engineering Math., Vol. 9 (1975 i 29-38

